Совместными
усилиями
к общему успеху
с 1997 года
«Интех ГмбХ»

Классификация фильтров. Особенности фильтров. Виды и типы фильтров

Инжиниринговая компания ООО «Интех ГмбХ» (LLC «Intech GmbH») с 1997 года осуществляет поставки отдельных узлов конструкций и оборудования, а также комплексно решает инжиниринговые задачи промышленных предприятий различных отраслей и готова разработать и поставить по Вашему индивидуальному техническому заданию различные фильтры и фильтровальное оборудование.

Классификация фильтров

Процесс фильтрации в настоящее время распространен крайне широко в самых разных областях, начиная от бытовой очистки воды и заканчивая разделением суспензий на химических производствах. В свою очередь разнообразие применений породило разнообразие конструкций аппаратов для осуществления этого процесса. Встречаются как крайне простые фильтры, в которых многие операции осуществляются вручную, так и сложные агрегаты, способные работать в непрерывном режиме длительное время. Тем не менее, можно выделить ряд основополагающих характеристик, по которым удобно проводить классификацию.

По режиму работы все фильтры можно разделить на:

  • периодического действия;
  • непрерывного действия.

В первом случае подача суспензии осуществлятся дозировано с перерывами на проведение вспомогательных операций, таких как удаление слоя осадка, в то время как во втором случае подача суспензии происходит непрерывно. Удержание дисперсной фазы происходит в любом случае, и если процесс происходит с закупориваем пор, то ее удаление становится сопряжено с дополнительными трудностями, поэтому для этих целей используют фильтры периодического действия. Если фильтрация идет с накоплением осадка, то могут применяться аппараты как периодического, так и не непрерывного действия. При этом в случае непрерывного процесса должно быть организованно постоянное удаление излишка осадка, скапливающегося на перегородке.

По способу организации перепада давления выделяют фильтры, работающие:

  • под давлением;
  • под вакуумом.

В общем случае фильтры, работающие под вакуумом, предпочтительнее по нескольким причинам. Во-первых, фильтр, работающий под давлением, испытывает большую нагрузку, чем аналогичный работающий под вакуумом, а значит должен обладать большей прочностью, что приводит к его удорожанию и повышению опасности в случае разгерметизации. Во-вторых, сжимаемые осадки при таком способе менее подвержены уплотнению. Конструкция фильтра может предполагать как работу только в одном из режимов, таки возможность переключаться между ними при минимальной перенастройке.

Фильтры, работающие под давлением

Друк фильтр






Наиболее простым типом фильтра, работающего под давлением, да и фильтра вообще, является Друк фильтр. Он представляет собой сосуд, разделенный фильтровальной перегородкой. В одну часть под давлением подается суспензия или загрязненный газ на разделение, либо же (в случае суспензии) давление создается подачей сжатого газа или самой суспензии под давлением. Проходя слой осадка и перегородку, сплошная фаза очищается от дисперсной фазы и поступает во вторую часть аппарата, после чего выводится наружу. Такие фильтры обычно просты по конструкции и работают в периодическом режиме, однако могут быть модифицированы для работы в непрерывном режиме, для чего над фильтрующей перегородкой устанавливают вращающиеся скребки, удаляющие излишек скапливающегося осадка.

Преимущество таких фильтров в простоте, как конструкции, так и обслуживания. Малая доля подвижных, изнашиваемых, сильно нагруженных и прочих “проблемных” элементов конструкции позволяет таким аппаратам работать в самых разных условиях и обслуживаться персоналом без высокой квалификации.

Фильтрпресс






Данный вид фильтров работает в периодическом режиме и используется преимущественно для фильтрования суспензий с малым содержанием дисперсной фазы, что связано со сложностью процесса удаления осадка, поэтому стараются минимизировать количество пауз.

Основу конструкции составляют плиты и рамы, расположенные поочередно и плотно прижатые друг к другу, между которыми располагают листы фильтровального материала. Рама и примыкающие к ней с разных сторон плиты образую отдельную ячейку фильтрования. Плиты имеют на своей поверхности параллельные борозды, по которым фильтрат стекает вниз и затем выводится из фильтра. Рамы полы внутри и образуют объем, в котором происходит накопление осадка. Отверстия по краям этих элементов конструкции при их совмещении образуют сквозные каналы, по одним из которых подается и распределяется между ячейками суспензия, а другие собирают потоки фильтрата и выводят их из фильтра. Рамы и плиты закрепляются на поддерживающих стержнях, а их плотное прилегание обеспечивает специальная прижимная плита.

Подобная конструкция позволяет изменять поверхность фильтрования путем установки нужного количества плит и рамок в зависимости от характеристик суспензии и расхода. Кроме того, такие аппараты получаются очень компактными, поскольку обладают хорошим соотношением площади фильтрации к занимаемой фильтром площади. Платой за эти преимущества является сложность процесса удаления уплотненного осадка, для чего требуется остановка процесса и разбор всей конструкции. В рамках решения этой проблемы у современных фильтров многие из этих операций делают автоматизированными.

Рукавные, листовые и патронные фильтры






Несмотря на то, что по конструкции эти фильтры периодического действия могут сильно отличаться, общий принцип организации процесса остается схожим. Общая площадь фильтрования в них складывается из площадей отдельных фильтрующих элементов разной формы для каждого из типов. Набор таких элементов располагают внутри корпуса фильтра, куда под давлением подается суспензия или газ, которые проходят внутрь элементов сквозь фильтрующий слой, где отделяется дисперсная фаза, и очищенные выводятся наружу. Скапливающийся слой осадка удаляют обратной промывкой, продувкой или механическим воздействием. Так, к примеру, в рукавных фильтрах устанавливают специальные устройства, периодически встряхивающие их, из-за чего скопившийся осадок откалывается и опускается на дно фильтра.

Рациональное расположение фильтровальных модулей внутри аппарата позволяет значительно экономить занимаемую им площадь в сравнении с обычными друк-фильтрами, а разнообразие их форм позволяет применять самые разные фильтровальные материалы, начиная от тканей и заканчивая пористым стеклом и керамикой.

Такие фильтры сравнительно проще в обслуживании, они могут быть в значительной степени автоматизированы, что позволяет им работать в непрерывном режиме, когда происходит попеременная очистка и удаление осадка с одних элементов, пока остальные заняты фильтрацией. Если процесс идет с закупориванием пор, то конструкция позволяет легко заменять вышедшие из строя фильтровальные элементы. В то же время осложняется контроль толщины осадка, и может потребоваться необходимость в дополнительных перемешивающих устройствах внутри фильтра, чтобы обеспечить равномерную фильтрацию по всей доступной площади.

Фильтры, работающие под вакуумом

Нутч-фильтры

Подобно друк-фильтру, нутч-фильтр имеет крайне простую конструкцию, а точнее во многом повторяет его. Собственно, при определенных условиях один и тот же аппарат может работать как под вакуумом, так и под давлением. Составные элементы фильтра те же: корпус и фильтрующая перегородка, разделяющего его на две полости. Разряжение создается ниже фильтрующей перегородки.

Основная проблема также состоит в удалении скапливающегося осадка, в связи с чем нутч-фильтры обычно делают периодического действия с ручной выгрузкой осадка. В некоторых случаях может быть предусмотрена механизированная выгрузка осадка, но чаще нутч-фильтры используют для несложного фильтрования малых объемов суспензии, где связанные с выгрузкой осадка проблемы оказываются несущественными.

Карусельные фильтры





Одной из попыток решить проблему периодического действия нутч-фильтров стало создание карусельных фильтров. Фактически это набор отдельных нутч-фильтров, работающих периодически, но при совместной их работе в поочередном режиме достигается эффект, при котором вся установка работает в непрерывном режиме. Фильтры расположены по окружности и подключены к источнику вакуума. Двигаясь по этой окружности, каждый из них проходит ряд цикличных стадий: фильтрация, промывка, сушка, удаление осадка и т.д. Такое движение напоминает карусель, откуда и произошло название. За возможность работать непрерывно карусельные фильтры расплачиваются более сложной конструкцией, однако сохраняя прочие преимущества нутч-фильтров.

Ленточные фильтры

Данный тип фильтров примечателен тем, что в нем движутся не отдельные его части, а само фильтровальное полотно, натянутое на роликах и по устройству напоминающее ленту конвейера. На участках, где непосредственно происходит фильтрование, полотно опирается на поддерживающую резиновую ленту с перфорацией. Отдельно взятый участок полотна при прохождении полного круга можно рассматривать как фильтр, претерпевающий ряд последовательных операций. В целом же получается так, что установка работает в непрерывном режиме, и в ней можно выделить отдельные зоны фильтрации, промывки, съема осадка и т.д.

Преимуществом такого типа фильтров является их возможность работать в непрерывном режиме, при этом без значительного усложнения конструкции. В установке нет такого количества подвижных элементов, совершающих сложное движение, как, к примеру, в карусельном фильтре. Кроме того, фильтровальное полотно должно обладать достаточной прочностью, чтобы не рваться, находясь в растянутом состоянии при эксплуатации.

Дисковые фильтры

Другим способом реализации непрерывного фильтрования, а также увеличения суммарной площади для фильтрования, относительно занимаемого установкой объема, являются дисковые фильтры. Конструктивно фильтр представляет собой набор дисков, обтянутых фильтровальной тканью и состоящих из разделенных перегородками внутренних полостей. Диски насажены на общий полый вал, подключенный к источнику вакуума. Диски примерно на половину погружаются в емкость с суспензией и приводятся во вращательное движение, чтобы задействовать всю доступную для фильтрования поверхность. Распределительное устройство внутри вала подключает к линии вакуума только те части диска, которые в тот момент погружены в суспензию. Жидкость фильтруется через слой материала, обтягивающего диски, попадает во внутренние полости и по ним через вал выводится из аппарата. Слой осадка удаляется с поверхности дисков с помощью ножей. Осадок по своей структуре должен быть достаточно однородным, не требовать промывки и состоять из медленно осаждаемых частиц, что связано с вертикальным расположением фильтровального полотна попаданием осадка назад в суспензию в случае его отлипания.

Барабанные фильтры





Барабанные фильтры также как дисковые имеют вращающийся элемент, который в данном случае имеет форму барабана. Фильтровальная поверхность обычно располагается на цилиндрической его части, которая также разделена на секции. Специальное распределительное устройство циклично по мере вращения барабана подключает их то к вакууму, то к источнику повышенного давления. Таким образом, добиваются деления окружности, по которой движется фильтровальное полотно, на участи, на которых осуществляется определенный процесс: фильтрация, продувка, промывка и т.д.

Барабан частично погружается в суспензию, и пока участок фильтровального полотна находится внутри нее, на нем происходит непосредственно фильтрация и накопление осадка. При дальнейшем вращении барабана этот участок поднимается над уровнем суспензии, и претерпевает ряд других вспомогательных операций. В конце промытый и просушенный осадок снимается с поверхности барабана ножом, и цикл фильтрации повторяется.

Особенности функционирования фильтров

В реальности практическое фильтрование происходит в состоянии постоянной скорости или разности давлений. Основной величиной, которая характеризует весь процесса фильтрования, считается скорость, она рассчитывает как объем отфильтрованного вещества, проходящего за единицу времени через единицу поверхности фильтрования.

Сф = dV / (F·dτ)   (1)

где Сф - скорость фильтрации, м3/(м2*с);
dV - объем отфильтрованного вещества (фильтрата), м3;
F - поверхность фильтрования, м2;
τ - время, с.

При этом скорость фильтрования прямо пропорциональна величине перепада давления в слое осадка и фильтровальной перегородке, то есть движущей силе и обратно пропорциональна сопротивлению, что выражается формулой:

Сф = ΔP / R   (2)

ΔP - движущая сила или перепад давления, Па;
R - общее сопротивление фильтрованию, Н∙с/м (Па∙с/м).

Величина сопротивления R не является неизменной, так как процесс фильтрации идет с постоянным ростом толщины осадочного слоя осадка и, соответственно, увеличением его сопротивления. Общее сопротивление - это сумма сопротивлений фильтрующей перегородки Rф и осадка Rос:

R = Rф + Rос = Rф + r·l   (3)

r – удельное сопротивление осадка, измеряемое, Н∙с/м4 (Па∙с/м2);
l – толщина осадка, м.

Удельное сопротивление осадка r определяется сопротивлением единицы объема осадка, имеющего высоту 1 м на 1 м2 поверхности фильтрации.

Из уравнений (2) и (3) следует, что скорость процесса фильтрования может быть найдена из равенства:

dV / Fdτ = ΔP / Rф + r·l   (4)

Объем осадка Vос в свою очередь определяется произведением площади фильтрования F и толщины осадка lос:

Vос = F·lос   (5)

Далее отношение объема получаемого осадка к объему отфильтрованного вещества обозначают через величину x = Vос / V, и получают следующее уравнение для каждого момента фильтрации:

Vос = xV   (6)

Исходя из формул (5) и (6), толщина осадка может быть выражена как lос=Vф·x/F и, подставляется в уравнение (4). В итоге выводится дифференциальное уравнение фильтрования:

dV/Fdτ = ΔP / (Rф + rVx/F)   (7)

Контакты компании